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Abstract 

The theory of divergent series is used to show that the probability density of a wave- 
mechanical state becomes classical trajectories (for a single particle or many interacting 
particles) in the limit h -+ 0. The probability interpretation is claimed to be valid even 
if a 'classical particle' idea is inserted into the theory. The idea 'particle' is claimed as a 
classical entity valid for h -+ 0. Finally, the double slit experiment is illustrated as an 
example and interpreted by the above theory. The interpretation is that the interaction 
between the incident and interference beams and the double slit is approximately de- 
scribed by the wave theory (interference mechanism). 

1. Introduction 

The trajectory picture of a particle in quantum mechanics can be used 
only when the analogy between classical dynamics and geometrical optics 
is considered. This development can be found systematically in the books 
of de Broglie (1860), Schr6dinger (1929) and Lanczos (1966). As yet, no 
trajectory picture has been derived from the probability density. On the 
contrary, the possibility of the probability interpretation almost destroys 
the trajectory picture. A critical study related to this problem had been 
surveyed by de Broglie (1964). Two problems (and their related points 
of view) mentioned in this book will be answered mathematically from 
quantum mechanics theory in this article. The first problem is that whether 
the 7~-function is objective or subjective representation of probabilities 
of a particle. According to de Broglie's (descriptive) point of view, it is 
only a subjective one. The second problem is 'how to incorporate a particle 
in an extensive wave field'. The answers given in this article to these two 
problems are as follows. First, the N-function is an objective representation 
of probability; and, secondly, it is meaningless to ask 'how can one in- 
corporate a "classical particle" in ~ ' .  The second answer will be expressed 
more clearly in Section 4. The method I shall use to answer these problems is 
a rigorous mathematical proof [which was mentioned in an earlier report 
(Su, 1968)]. The mathematical method used, apart from many other less 
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rigorous ways, is the theory of divergent series (Hardy, 1948; Knopp, 1957). 
The only result which can answer the above problems (and other related 
problems) is that the probability density of W-function of a single particle 
or many particle system, in h -+ 0, indicates the classical trajectories of 
particle(s). This classical trajectory, obtained mathematically from the 
probability interpretation, is by no means trivial. Consequently, in h -+ 0, 
the probability interpretation is valid correctly and confirms the classical 
trajectory of the particle(s). Thus, the 'particle' is concluded to be only a 
classical entity which appears only in h -+ 0 in a quantum system. 

It is noted that, since the proof in this article is based on the theory of 
divergent series (rigorously), the theory of divergent series should be basic 
mathematics for quantum mechanics. If so, we can obtain, in the viewpoint 
of this author, a consistent theory for quantum mechanics and classical 
mechanics from the probability interpretation point of view. 

2. A Quan tum Mechan ica l  Theorem 

Applying Riesz's process in the theory of divergent series (Hardy, 1948; 
Knopp, 1957), in the Appendix, we have proved the following: 

Theorem 

Let H be a Hermitian operator with eigenfunction ~(r~ (with possible 
degeneracy r) corresponding to the eigenvalue E,. Denoting the subspace 
spanned by ~b(, r) for all possible values of r by M ,  we have a projection 
operator Pu  onto M. Then the limit 

i. H - E ,  l m exp ~ r = P~ 
~'--~ to / ~  

- ~ [q~(~'~)(q~(,~)l (2.1) 

R e m a r k s  

(i) H may be the Hamiltonian of the system and E, its eigenvalues. 
(ii) The parameter ~- may be considered as time if His  time-independent. 

Then (2.1) is related to the evolution operator for t -+ oo.t 
For a complete set of commuting observables A l , . . . , A s  with eigen- 

values a I . . . .  , an, (2.1) implies 

/~ lim exp A~(p'q) -- as ~=1 , , - ~  ih "/" = [ ~ a l  . . . . .  aN)(~al . . . . . .  NI (2.2) 

the pure state projection operator or density operator. 
(iii) Since we can formulate the quantum mechanics based on the 

density operator (Fano, 1957), the left-hand side of (2.1) (after multiplying 
an equal probability in every degenerate state), or the left-hand side of 

t See this journal, p. 233. 
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(2.2) can be used as density operator to formulate the quantum mechanics 
as alimit process. Further properties, especially the classical correspondence, 
are still under investigation by the same author. 

3. {q}-Representation and the Classical Limit 
Since any quantum state is determined up to a phase factor if it is normal- 

ized in a certain way, starting with {q}-representation but with an explicit 
phase, i.e. [{exp[iS(q)/h])lq)], we can assign the function S(q) uniquely 
(up to an unimportant difference 2n~rh) in the 'energy representation' as 
follows. The Schr6dinger equation in this representation is 

o r  

(q e x p ~ H ( p , q ) ~ > = E ( q  exp----h~q~/-iS(q)'\ 

O+OS,q]fqlexp~-Sq~>=E+ exp Z ~ >  H(-ih q ]\I 
where we have used the formula (Dirac, 1958) 

- iS iS OS 
exp ~- -p  exp ~- = p + 0q 

In the classical limit h -+ 0, 

is the Hamilton-Jacobi equation. That is, we have assigned S(q) as the 
Jacobi S function in the phase. For the time-dependent Schr6dinger 
equation, replacing S(q) by 

we have 

W(q, t) = S(q) - Et 

(q expSJ~W-H(p,q)~>=(q exp T - i W ' 0 \ t h  Ot ~)  

The last equation, in the classical limit h -+ 0, becomes 

H/aW, ~ ~W (3.1) 

Again, it is the Hamilton-Jacobi equation. 
Now applying this representation to the operator in (2.1) with H being 

the Hamiltonian, and further assuming first that it is non-degenerate with 
eigenvalue E, and 

W(q, t) = S(q) - E, t 
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Then 

(q'l~.) <~.lq) exp i(W(q, t) - W(q', t)) 
h 

=(q, exp-iW(q',t) [limexpH(p,q)-- E~ c} iW(q,t) \ ~( h t,-,= ih e x p - - ~  q /  

= (  q'expi[W(q't)-W(q''t)][limexpH[p+(OW/Oq)'q]+OW/Ot-h t,-~oo ih r}q) 

In the classical limit h -+ 0, 

I , 

(q'l~.) (~.lq) = ~.(q )~. (q) 
OW 

(3.2) 

Therefore the density operator is diagonalized and has only non-vanishing 
matrix element for those q's (or q"s) 

H[OW,q] OW (3.3) \ 1=- 

From (3.1), the 'probability density' ~,(q')q~,*(q) vanishes everywhere 
except at given point q at the given instant t along the classical trajectory 
with E = E,. Along this classical trajectory, it has infinite possibility (particle 
property). In order to find the particle there, the probability interpretation 
is confirmed to be 

f dq' ~,(q') (~,*(q) = f dq' ~(q' - q) = 1 

Consequently, as h is small, the solutions both from the probability inter- 
pretation of the quantum mechanics and from classical mechanics are the 
same. Since the limit h - +  0 does not create any physical particles, the 
particle(s) should be there inside the wave-field even if /i is finite. 
That means that the W-function is an objective representation of  
probabilities. 

The classical physical particle represented by the probability density 
3(q' - q) was correct only in the limit h -+ 0. If  the 'particle' is there inside 
the rfi*(q')(~(q) if h is finite, then we do not have a ~(q'-q) to describe 
the particle. Thus the 'particle' idea itself is only a classical concept. When 
we treat the problem in the quantum mechanics, the description of  the 
physical system of'particle' should be naturally a wave field. This approach 
might solve the troubles in quantum mechanics and interprets its pecu- 
liarities such as probability interpretations, the uncertainty principle, etc. 
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For the degenerate case, (2.2) is used. Denoting H =  A, and En = a,, 
we have 

�9 ~a, ..... aN(q )~al ..... ,~(q)= ~I  ~ At ,q ,at S (q ' - -q )  

in the time-independent {exp(iS/h)lq>}-representation above. All classical 
dynamical quantities of the particle have their own values (equal to the 
corresponding quantum numbers of the state) along the classical trajectory 
since along the classical trajectoryp = aS/aq and At(OS/Oq, q) = A~(p,q) = a~. 

4. Interacting Systems 

As it is claimed above that we need not incorporate a particle in an ex- 
tended wave field specifically we shall discuss, apart from the obvious case in 
Section 3 above, about more complicated processes, such as collision 
problems, measurement or disturbance problems, absorption or creation 
processes, etc. in this section. All the complicated processes indicated above 
are many interacting particle system. Such a system should have a total 
Hamiltonian as believed generally by the author. No problems occur in 
the low-energy physics cases. In the field of high-energy physics, Dirac 
(1966, 1970) also stressed this concept. Once such a total Hamiltonian can 
be written down, using the theory given in Sections 2 and 3, the problem 
is solved. The entire many interacting quantum particle system should be a 
classical many interacting particle system in the limit h -+ 0. Every particle 
is presented there with the probability density 3(q' - q) for every degree of 
freedom and moves in its own classical trajectory, as in the classical case. 
Nothing should be considered such as the case where the incident particle 
exists in the incident beam, and so on. 

Finally, we discuss the double slit interference experiment. If  we consider 
the stationary incident beam and the stationary interference wave-beam 
and the double slit to form an interacting system, a total Hamiltonian can 
be written down. The argument above is valid for h -+ 0, i.e. the inter- 
ference pattern appears quantum mechanically as a rigorous mathematical 
result of the mathematics above, and also, for h ~ 0, in its classical cor- 
respondence. 

Since such a system is too complicated to be described by a Hamiltonian 
explicitly, we consider the system approximately as follows. After passing 
the double slit, the particles must obey the single-particle equations (free- 
particle equations). In h ~ 0, the particle appears on the screen individually 
(de Broglie, 1964) following its own classical trajectory. The interaction of 
the double slit with the incident and interference beams near the double 
slit give the initial conditions for each free particle in the interference beam 
described above. These initial conditions can, approximately or pheno- 
menologically, be described by the wave theory (interference mechanism). 
Then the interference pattern comes, as it should, from the wave theory. 
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This kind of approximate argument is similar to that of de Broglie (1964, 
p. 55). 

The classical dynamical idea and the wave-mechanical descriptions are 
consistent if h ~ 0 is considered in the classical case. Further, the particle 
is only a classical entity, i.e. the idea 'particle' is valid only in the limit 
h ~ 0 .  

Appendix 

Proof of  the Theorem (2.1) 

By the Riesz process in the theory of divergent series (Hardy, 1948; 
Knopp, 1957), if a function s(t) with s(0) = 0 is such that 

lim 1 f s(t) dt = s 
w~oo W 

0 

the sequence {s(t)} is called 'limitable Ra~ with the value s'. Now, specifically, 
for the function 

s(t) = exp(iat) - 1 

it is easy to show that exp( iat ) -  1 is limitable Ral with the value -1  as 
a ~ 0  and with the value 0 as a = 0. This shows that a function can be 
defined as 

3(x, y) - lim exp [i(x - y) t] 
t-Oo0 

Less rigorous proofs of (A. 1) can be found in Schweber (1961), Goldberger 
& Watson (1964) or by Fourier transform together with a contour integral. 

One property of 8(x,y) used below is given as 

b I b 2 b 

f dx f dy Cx, y)f(x,y)= f axf(x,x) (g,2) 
a l  a2 a 

wheref(x,y)  is an arbitrary function of x, y and a, b are the smaller ones 
of a~'s and b~'s, respectively. (A.2) cannot be obtained by the usual integra- 
tion methods. It is noted that the Dirac f-function does have the same 
double integral property as (A.2). 

Now, applying (A.1) and (A.2), we shall prove the theorem (2.1) in 
Section 2. First, for the discrete spectrum, since the Hermitian operator 
generates a complete basis for the Hilbert space (Halmos, 1957), any 
arbitrary state ~b can be expanded as 

m , r  
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